Reconfigurable Metasurfaces for Frequency Selective Absorption
نویسندگان
چکیده
منابع مشابه
Reconfigurable Gradient Metasurfaces With Random Access
Since metamaterials have enabled the design of almost arbitrary landscapes of static optical properties and functionalities, dynamic temporal and spatial control over metamaterial properties has become the next big challenge [1]. Here we demonstrate the first randomly addressable reconfigurable metamaterials, thus enabling fast and high-contrast control over optical properties simultaneously in...
متن کاملWavevector Selective Metasurfaces and Tunnel Vision Filters
Metasurfaces offer unprecedented flexibility in the design and control of light propagation, replacing bulk optical components and exhibiting exotic optical effects. One of the basic properties of the metasurfaces, which renders them as frequency selective surfaces, is the ability to transmit or reflect radiation within a narrow frequency band that can be engineered on demand. Here we introduce...
متن کاملGeometrical tradeoffs in graphene-based deeply-scaled electrically reconfigurable metasurfaces
In this work we study the terahertz light propagation through deeply-scaled graphene-based reconfigurable metasurfaces, i.e. metasurfaces with unit-cell dimensions much smaller than the terahertz wavelength. These metasurfaces are analyzed as phase modulators for constructing reconfigurable phase gradients along an optical interface for the purpose of beam shaping. Two types of deeply-scaled me...
متن کاملResponses of Waveform-Selective Absorbing Metasurfaces to Oblique Waves at the Same Frequency
Conventional materials vary their electromagnetic properties in response to the frequency of an incoming wave, but these responses generally remain unchanged at the same frequency unless nonlinearity is involved. Waveform-selective metasurfaces, recently developed by integrating several circuit elements with planar subwavelength periodic structures, allowed us to distinguish different waves eve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Optical Materials
سال: 2020
ISSN: 2195-1071,2195-1071
DOI: 10.1002/adom.201902182